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Abstract
For a prescribed pair of quantum states |ψI 〉 and |ψF 〉 we establish an
elementary derivation of the optimum Hamiltonian, under constraints on its
eigenvalues, that generates the unitary transformation |ψI 〉 → |ψF 〉 in the
shortest duration. The derivation is geometric in character and does not rely on
variational calculus.

PACS numbers: 03.65.Xp, 03.65.Vf

Recently Carlini et al [1] considered the following problem: What is the optimum choice
of the Hamiltonian, under a given set of constraints, such that the transformation between a
designated pair of quantum states is achieved in the shortest possible time? Evidently this
question is of relevance to the implementation of various algorithms in quantum computation
(see, e.g., [1, 2] and references cited therein). Two specific examples for the constraints on the
Hamiltonian are considered in [1], and the optimum solutions are obtained using the method
of variational calculus.

The purpose of this paper is to show that analogous results can be obtained more directly
by use of the symmetry properties of the quantum state space, hence avoiding the use of
variational calculus. Our approach is closely related to the idea considered in [3], where an
elementary derivation is provided for the minimum time required to transform one quantum
state into another for a given Hamiltonian. The idea here is to reverse the argument to find the
optimum choice of the Hamiltonian that achieves the transformation in the minimum time.

Consider a Hilbert space Hn+1 of dimension n + 1, and assume that an arbitrary pair of
initial and final states |ψI 〉 and |ψF 〉 are specified. The task is to find the Hamiltonian H
on Hn+1 that generates the unitary transformation |ψI 〉 → |ψF 〉 = eiHτ/h̄|ψI 〉 in a shortest
possible time τ . Clearly, if the differences between the eigenvalues of the Hamiltonian are
allowed to take large values, then the value of τ can be made very small. This is because
the ‘speed’ of a unitary evolution is proportional to the energy uncertainty (the so-called
Anandan–Aharonov relation [4]). As a consequence, if the differences between eigenvalues
can be made large, the energy uncertainty can also be made large. Hence we impose the
constraint that the difference of the largest and the smallest eigenvalues of H be bounded by a
constant.
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Figure 1. Optimum state transformation. In Hilbert space Hn+1 one wishes to unitarily transform
the initial state |ψI 〉 into the final state |ψF 〉 in the shortest possible time. In Hn+1 there is a unique
two-plane H2 that contains the two endpoints of the vectors |ψI 〉 and |ψF 〉, and the origin. In
projective terms this plane corresponds to a complex projective line in the space Pn of pure states,
and the two vectors |ψI 〉 and |ψF 〉 determine a pair of points on this line. The geodesic curve that
joins these two points lies on this complex line, which in real terms is just a two-sphere S2. Given
a pair of points ψI and ψF on S2 there is a unique great circle arc passing through these points.
The most expedient transformation |ψI 〉 → |ψF 〉 is thus obtained by the rotation of S2 around the
axis that is orthogonal to the hemispherical plane containing ψI and ψF . The axis of rotation, in
particular, corresponds to a pair of orthogonal states |E±〉. The Hamiltonian that generates this
rotation therefore takes the form H = λ+|E+〉〈E+| + λ−|E−〉〈E−| for a pair of real parameters λ±.

(This figure is in colour only in the electronic version)

For the analysis of a problem of this kind it is useful to work directly with the space of
rays through the origin of Hn+1. This is just the complex projective space Pn of dimension
n; each ray |ϕ〉 ∈ Hn+1 then corresponds to a point ϕ ∈ Pn. Thus Pn can be thought of as
the space of directions in Hn+1. Now given a pair of points ψI ,ψF ∈ Pn corresponding to
the states |ψI 〉 and |ψF 〉 in Hn+1 we can join these two points by a line. The points on this
line correspond to all possible linear superpositions of the states |ψI 〉 and |ψF 〉. That is, the
(complex) line in Pn corresponds to the two-dimensional subspace of Hn+1 spanned by the
two vectors |ψI 〉 and |ψF 〉 (see figure 1). In real terms the complex line in Pn corresponds to
a two-sphere (the so-called Bloch sphere) S2, and the two states thus correspond to a pair of
points on the surface of this two sphere.

It is evident that there is a unique geodesic curve on S2 that joins ψI and ψF ; this is
just the great circle arc passing through these two points (cf [5, 6]). Therefore, the unitary
transformation that takes the state |ψI 〉 into |ψF 〉 in the smallest possible time is achieved by
a rotation of S2 around the axis such that the geodesic curve joining ψI and ψF constitutes
the equator associated with that axis. There are infinitely many other unitary transformations
that achieve the transformation |ψI 〉 → |ψF 〉; however, all these transformations will require
longer times to be realized because the corresponding trajectories are not geodesic curves.

We thus proceed to determine this axis of rotation. To this end let us write |ψ̄I 〉 for the
state orthogonal to the initial state |ψI 〉 that is contained in the two-dimensional span of the
initial and final states in Hn+1 (i.e. the antipodal point on S2). Then the final state |ψF 〉 can be
written in the form

|ψF 〉 = cos 1
2θ |ψI 〉 + ei(φ+π/2) sin 1

2θ |ψ̄I 〉. (1)

Since both |ψI 〉 and |ψF 〉 are prespecified, the values of the two parameters θ, φ are known.
Our objective now is to find the axis defined by a pair of antipodal points on S2 for which |ψI 〉
and |ψF 〉 lie on the equator (see figure 1). Since |ψI 〉 and |ψ̄I 〉 lie on the equator associated
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with the (E+, E−)-axis, conversely the two states |E+〉, |E−〉 lie on the equator associated
with the (ψI , ψ̄I )-axis. Hence these states can be expressed as equal superpositions of |ψI 〉
and |ψ̄I 〉:

|E+〉 = 1√
2
(|ψI 〉 + eiφ|ψ̄I 〉) and |E−〉 = 1√

2
(|ψI 〉 − eiφ|ψ̄I 〉). (2)

Solving (1) for |ψ̄I 〉 and substituting the result into (2) we obtain

|E+〉 = 1√
2

[(
1 + i

cos 1
2θ

sin 1
2θ

)
|ψI 〉 − i

sin 1
2θ

|ψF 〉
]

(3)

and

|E−〉 = 1√
2

[(
1 − i

cos 1
2θ

sin 1
2θ

)
|ψI 〉 +

i

sin 1
2θ

|ψF 〉
]

. (4)

These states thus determine the axis of rotation that we are seeking.
Now the unitary rotation that gives rise to the rotation of the two-sphere about the axis

|E+〉 and |E−〉 is generated by the Hamiltonian

H = λ+|E+〉〈E+| + λ−|E−〉〈E−| (5)

for some choice of real parameters λ+ �= λ−. Substituting (3) and (4) into (5) we can express
this Hamiltonian in terms of the two input states:

H = λ+ + λ−
2 sin2 1

2θ
(|ψI 〉〈ψI | + |ψF 〉〈ψF |)

+

[
λ+

2

(
i

1

sin 1
2θ

− cos 1
2θ

sin2 1
2θ

)
− λ−

2

(
i

1

sin 1
2θ

+
cos 1

2θ

sin2 1
2θ

)]
|ψI 〉〈ψF |

+

[
λ+

2

(
−i

1

sin 1
2θ

− cos 1
2θ

sin2 1
2θ

)
− λ−

2

(
−i

1

sin 1
2θ

+
cos 1

2θ

sin2 1
2θ

)]
|ψF 〉〈ψI |. (6)

Because the Hamiltonian in standard quantum mechanics is defined up to an overall additive
constant, without loss of generality we may set λ+ − λ− = ξ , and hence, λ+ = −λ− = ξ/2,
for some real parameter ξ . It then follows at once from (6) that

H = iξ
1

2 sin 1
2θ

|ψI 〉〈ψF | − iξ
1

2 sin 1
2θ

|ψF 〉〈ψI |. (7)

Finally we shall impose the constraint that the difference of the largest and the smallest
eigenvalues (here there are only two) of the Hamiltonian be given by 2ω. Since the eigenvalues
of H in (7) are ±ξ/2 sin 1

2θ we have ω = ξ/2 sin 1
2θ .

More generally, we may consider time-dependent Hamiltonians. However, because of
the constraint on the difference of the eigenvalues, the parameter ω cannot vary in time. As a
consequence the only time dependence that can be introduced here is that associated with the
overall magnitude of the Hamiltonian, which in itself does not affect the dynamics. Letting
h(t) denote this gauge term and 1 denote the identity operator, the optimum choice for the
Hamiltonian can thus be written as

H = iω|ψI 〉〈ψF | − iω|ψF 〉〈ψI | + h(t)1. (8)

This is the main result obtained in [1]. We emphasize that this result is obtained here from
the symmetry properties of the quantum state space, essentially only requiring the use of
elementary trigonometry.
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As noted above, the time it takes to achieve the transformation |ψI 〉 → |ψF 〉, under the
unitary evolution generated by the Hamiltonian (8), can be determined from the Anandan–
Aharonov relation [4], which states that the ‘speed’ of the evolution of a given quantum state
is given by 2h̄−1
H , where 
H is the standard deviation of the Hamiltonian. Note that the
energy variance is a constant of motion. Therefore, calculating the standard deviation of (8)
in the state, say, |ψI 〉, we deduce that


H = ω sin 1
2θ. (9)

On the other hand, the separation of the two states |ψI 〉 and |ψF 〉 is just the angle θ . We thus
find that

τ = h̄θ

2ω sin 1
2θ

. (10)

Alternatively, the time required for achieving the transformation can be determined more
explicitly as follows. We take the Hamiltonian (8) and use it to calculate the time dependence
of the state explicitly as

|ψ(t)〉 =
[

cos

(
h̄−1ωt sin

1

2
θ

)
− cos 1

2θ

sin 1
2θ

sin

(
h̄−1ωt sin

1

2
θ

)]
|ψI 〉

+
1

sin 1
2θ

sin

(
h̄−1ωt sin

1

2
θ

)
|ψF 〉, (11)

where |ψ(0)〉 = |ψI 〉. Evidently the coefficient of |ψI 〉 in the state |ψ(t)〉 first vanishes at
time t = h̄θ

/
2ω sin 1

2θ , while at that time the coefficient of |ψF 〉 becomes unity.
In the foregoing material we have considered the case for which there is only one constraint

on the Hamiltonian, namely, that the difference of the largest and the smallest eigenvalues
be a constant. In a more realistic set-up, however, there can be further constraints to limit
the allowable operations. Although the use of variational calculus suggested in [1] is quite
effective in general, it should be evident that within a given context, the determination of
the optimum Hamiltonian that achieves the desired transformation simplifies considerably by
taking into account the symmetries of the relevant state space.
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Corrigendum

Lattice Boltzman simulations of the acoustic radiation from waveguides
D C Brody and D W Hook 2006 J. Phys. A: Math. Gen. 39 L167–170

We have made an incorrect assertion below equation (7) regarding the eigenvalues of the
Hamiltonian H in (7). The correct eigenvalues for the Hamiltonian H in (7) are ±ξ/2. The
subsequent formulae appearing in the paper thus need to be amended as follows. Since the
difference of the largest and the smallest eigenvalues of the Hamiltonian is 2ω, we have ξ = 2ω.
The Hamiltonian in (8) then reads

H = iω

sin 1
2θ

|ψI 〉〈ψF | − iω

sin 1
2θ

|ψF 〉〈ψI | + h(t)1. (8)

The energy variance obtained in (9) must be replaced with

�H = ω, (9)

and the time required for the optimal transformation obtained in (10) must be replaced with

τ = h̄θ

2ω
. (10)

The expression for the time dependent state vector in (11) becomes

|ψ(t)〉 =
[

cos

(
ωt

h̄

)
− cos 1

2θ

sin 1
2θ

sin

(
ωt

h̄

)]
|ψI 〉 +

1

sin 1
2θ

sin

(
ωt

h̄

)
|ψF 〉. (11)

The coefficient of |ψI 〉 in |ψ(t)〉 first vanishes at time t = h̄θ/2ω.
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